Basic Information:

Complete the following:

- The slope on a Position vs. Time graph indicates \qquad .
- The slope on a Velocity vs. Time graph indicates \qquad .
- The area between the plot of velocity (on a Velocity vs. Time graph) and the horizontal axis indicates \qquad .
- The symbol for the acceleration due to gravity is ___ and has a value of \qquad near earth.
- In the absence of air resistance, all objects fall with constant \qquad to fully describe it.
- A vector is a quantity that requires both \qquad and

Equations: Complete the table, writing the equation for each quantity in the appropriate box:

Displacement	Average Speed	Average Velocity	Average Acceleration

Given vector V, shown below, write out the equations to solve for each of the following (in terms of the variables shown):

Vector V	Horizontal Component (Vx)	Vertical Component (Vy)	Direction ($\boldsymbol{\theta}$)

Application:

Complete the following on the Position vs. Time graph to the right:

- Put a scale on the vertical axis
- From 0-2 sec, plot motion that indicates constant positive velocity.
- From 2-4 sec, plot motion that indicates slowing down in the positive direction
- From 4-6 sec, plot motion that indicates the object is at rest
- From 6-8 sec, plot motion that indicates speeding up in the negative direction
- From $8-10 \mathrm{sec}$, plot motion that indicates slowing down in the negative direction.
- Calculate the average velocity of the object from $2-4$ seconds:

- Calculate the instantaneous velocity at 1 second:
- Calculate the displacement that occurs from 6-8 seconds:
- Calculate the total distance that the object traveled in 10 seconds:

Vectors: Show work where calculations are necessary.

Vectors A through F are located along the sides and diagonals of a parallelogram. Answer the following:
(a) $\mathbf{A}+\mathbf{B}=$???
(b) $\mathbf{A}-\mathbf{B}=$???
(c) $\mathbf{C}+\mathrm{F}=$???

(d) $\mathrm{A}+\mathrm{D}+\mathrm{F}=$? ??
(e) $\mathbf{A}-\mathbf{C}=$???

A soccer ball is kicked with an initial velocity of 35 degrees. Calculate the components of its initial velocity.

The components of the velocity of a ball are given to the right. What is the resultant vector? Make sure to provide magnitude and direction:

Kinematic Equations: Solve the following problems using the kinematic equations (SHOW ALL WORK):
A jet-powered car called The Spirit of America required 9600 meters to stop from its highest speed. If the car decelerated at a rate of $-2.0 \mathrm{~m} / \mathrm{s}^{2}$, what was the initial speed of the car?

Write your own problem using the data provided, and then solve for time:

Δx	$V_{\mathbf{i}}$	$\mathbf{V}_{\mathbf{f}}$	\mathbf{a}	\mathbf{t}
28 m	$40 \mathrm{~m} / \mathrm{s}$	$0 \mathrm{~m} / \mathrm{s}$		

A ball is launched straight up into the air with a velocity of $50 \mathrm{~m} / \mathrm{s}$. Assuming the acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, down (to $\mathbf{~ m a k e}$ our numbers easier), complete the table of data for the velocity of the ball as it varies with time, and then plot the data on the graph below:

Velocity $(\mathrm{m} / \mathrm{s})$	50										
Time (s)	0	1	2	3	4	5	6	7	8	9	10

- What is the average acceleration from $2-8$ seconds?
- What is the instantaneous acceleration at 5 seconds?
- What is the displacement of the ball at 5 seconds?
- What is the total displacement of the ball during 10 sec ?

Using the Velocity vs. Time graph, complete the table below, then use the data to construct a position vs. time graph, and an acceleration vs. time graph. SHOW ALL WORK for your area and slope calculations

Time (\mathbf{s})		$\mathbf{x x}(\mathbf{m})$
0		$\mathbf{x}(\mathbf{m})$
1		
2		
3		
4		
5		
6		

Velocity vs. Time

Time (s)

Position vs. Time

Time (s)

Acceleration vs. Time

